Sashital lab publications (link to Google Scholar)
Nguyen, G.T., Schelling, M.A. and D.G. Sashital. (2024) CRISPR-Cas9 target-strand nicking provides phage resistance by inhibiting replication. bioRxiv. doi.org/10.1101/2024.09.05.611540. Prepring. link
Nguyen, G.T.‡, Schelling, M.A. ‡, Raju, A., Buscher, K.A., Sritharan, A. and D.G. Sashital. (2024) CRISPR-Cas12a exhibits metal-dependent specificity switching. Nucleic Acids Res. gkae613. ‡Equal contribution link
Previous version (preprint) bioRxiv link
Dhingra, Y. and D.G. Sashital. (2023) A tool for more specific DNA integration. Science, 382:768-69. Preview Article. link($)
Adler, B.A.‡, Trinidad, M.I.‡, Bellieny-Rabelo, D., Zhang, E., Karp, H.M., Skopintsev, P., Thornton, B.W., Weissman, R.F., Yoon, P.H., Chen, L., Hessler, T., Eggers, A.R., Colognori, D., Boger, R., Doherty, E.E., Tsuchida, C.A., Tran, R.V., Hofman, L., Shi, H., Wasko, K.M., Zhou, Z., Xia, C., Al-Shimary, M.J., Patel, J.R., Thomas, V.C.J.X., Pattali, R., Kan, M.J., Vardapetyan, A., Yang, A., Lahiri, A., Maxwell, M.F., Murdock, A.G., Ramit, G.C., Henderson, H.R., Calvert, R.W., Bamert, R.S., Knott, G.J., Lapinaite, A., Pausch, P., Cofsky, J.C., Sontheimer, E.J., Wiedenheft, B., Fineran, P.C., Brouns, S.J.J., Sashital, D.G., Thomas, B.C., Brown, C.T., Goltsman, D.S.A., Barrangou, R., Siksnys, V., Banfield, J.F., Savage, D.F. and J.A. Doudna. (2023) CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res, 42:D590-D596. ‡ Equal contribution link
Dhingra, Y. and D.G. Sashital. (2023) Cas4/1 dual nuclease activities enable prespacer maturation and directional integration in a type I-G CRISPR-Cas system. J Biol Chem, 299:105178. link
Previous version (preprint) bioRxiv link
Schelling, M.A., Ngyuen, G.T., & D.G. Sashital. (2023) CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes. PLoS Biol, 21:e3002065. link
Previous version (preprint) bioRxiv link
Dhingra, Y., Suresh, S.K., Juneja, P. & D.G. Sashital. (2022) PAM binding ensures orientational integration during Cas4-Cas1-Cas2 mediated CRISPR adaptation. Mol Cell, 82:4353-4367. link
Previous version (preprint) bioRxiv link
Nguyen G.T., Dhingra Y., & D.G. Sashital. (2022) Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Curr Opin Struct Biol. 77:102466. Review Article. link
Lee, H. & D.G. Sashital. (2022) Creating memories: Molecular mechanisms of CRISPR adaptation. Trends Biochem Sci. 47:464-76. Review Article. link($)
Murugan, K., Suresh, S.K., Seetharam, A.S., Severin, A.J. & D.G. Sashital. (2021) Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR–Cas9 variants. Nuc Acids Res. 49, 4037-53. link
Previous version (preprint) bioRxiv link
Dhingra, Y. & D.G. Sashital. (2020) Updating the CRISPR Catalogue. CRISPR J, 3: 78-80. Preview Article. link
Schelling, M.A. & D.G. Sashital. (2020) An adaptable defense. eLife, e56122. Preview Article. link
Murugan, K., Seetharam, A.S., Severin, A.J., & Sashital, D.G. (2020) CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 295: 5538-53. link
Previous version (preprint) bioRxiv, 657791. link
Lee, H., Dhingra, Y., & Sashital, D.G.. (2019) The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. eLife. e44248. link
Suresh, S.K., Murugan, K., & Sashital, D.G.. (2019) Enzymatic anti-CRISPRs improve the bacteriophage arsenal. NSMB. 26, 250-251. News & Views article. link($)
Xue, C. & Sashital, D.G.. (2019) Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus. 8. Review article. link ($)
Phan, P., Schelling, M., Xue, C., & Sashital, D.G.. (2018) Fluorescence-based methods for measuring target interference by CRISPR–Cas systems. Methods in Enzymol. 616, 61-85. link($)
Mekler, V., Kuznedelov, K., Minakhin, L., Murugan, K., Sashital, D.G., & Severinov, K. (2018) CRISPR–Cas molecular beacons as tool for studies of assembly of CRISPR–Cas effector complexes and their interactions with DNA. Methods in Enzymol. 616, 337-363. link($)
Davis-Vogel, C., Van Allen, B., Van Hemert, J.L., Sethi, A., Nelson, M.E., & Sashital, D.G.. (2018) Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug. PLoS One. 13:e0203160. link
Davis-Vogel, C., Ortiz, A., Procyk, L., Robeson, J., Kassa, A., Wang, Y., Huang, E., Walker, C., Sethi, A., Nelson, M.E., & Sashital, D.G.. (2018) Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm. Sci Rep. 8, 7858. link
Sashital, D.G. (2018) Pathogen detection in the CRISPR-Cas era. Genome Med, 10, 32. Preview Article link
Lee, H., Zhou, Y., Taylor, D.W., & Sashital, D.G. (2018) Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays. Mol Cell. 70, 1-12. link
Xue, C., Zhu, Y., Zhang, X., Shin, Y.K., & Sashital, D.G. (2017) Real-time observation of target search by the CRISPR surveillance complex Cascade. Cell Rep. 21, 3717-3727. link
Murugan K., Babu K., Sundaresan R., Rajan R., & Sashital D.G. (2017) The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell. 68, 15-25. Review Article link
Sashital, D.G. (2017) Prokaryotic Argonaute Uses an All-in-One Mechanism to Provide Host Defense. Mol Cell. 65, 957-958. Preview Article link
Xue, C., Whitis, N.R., & Sashital, D.G. (2016) Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Mol Cell. 64, 1-9. link
Wolt, J.D., Wang, K., Sashital, D.G., & Lawrence-Dill, C.J. (2016) Achieving Plant CRISPR Targeting that Limits Off-Target Effects. Plant Genome. 9. Review Article link
Xue, C., Seetharam, A.S., Musharova, O., Brouns, S.J.J., Severinov, K., Severin, A.J., & Sashital, D.G. (2015) CRISPR interference and priming varies with individual spacer sequences. Nuc Acids Res. 43, 10831-47. link
Pre-ISU publications
Sashital, D.G.*, Greeman, C.A.*, Lyumkis, D., Potter, C.S., Carragher, B., & Williamson, J.R. (2014) A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife. 3:e04491. *Equal contribution link
Sashital, D.G., Wiedenheft, B., & Doudna, J.A. (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. 46, 606-15. link
Burke, J.E., Sashital, D.G., Zuo, X., Wang, Y., & Butcher, S.E. (2012) Structure of the yeast U2/U6 snRNA complex. RNA. 18, 673-83. link
Sashital, D.G., Jinek, M., & Doudna, J.A. (2011) An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol. 18, 680-7. link($)
Sashital, D.G. & Doudna, J.A. (2010) Structural insights into RNA interference. Curr Opin Struct Biol, 20, 90-7. Review Article link
Sashital, D.G. & Butcher, S.E. (2007) Is the spliceosome a ribozyme? In D.M.J. Lilley and F. Eckstein (Eds.), Ribozymes and RNA catalysis (pp. 253-266). Cambridge: The Royal Society of Chemistry. Book Chapter
Sashital, D.G., Venditti, V., Angers, C.G., Cornilescu, G., & Butcher, S.E. (2007) Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. RNA, 13, 328-38. link
Sashital, D.G. & Butcher, S.E. (2006) Flipping off the riboswitch: RNA structures that control gene expression. ACS Chem Biol, 1, 341-5. Preview Article link($)
Sashital, D.G., Cornilescu, G., McManus, C.J., Brow, D.A. & Butcher, S.E. (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol, 12, 1237-42. link($)
Sigel, R.K., Sashital, D.G., Abramovitz, D.L., Palmer, A.G., Butcher, S.E., & Pyle, A.M. (2004) Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat Struct Mol Biol, 11, 187-92. link($)
Sashital, D.G., Allmann, A.M., Van Doren, S.R., & Butcher, S.E. (2003) Structural basis for a lethal mutation in U6 RNA. Biochemistry, 42, 1470-7. link